Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
The enhancement and eastward expansion of climate warming and humidification, formation mechanism and important environmental impacts in Northwest China
ZHANG Qiang, YANG Jinhu, MA Pengli, YUE Ping, YU Haipeng, YANG Zesu, WANG Pengling, DUAN Xinyu, LIU Xiaoyun, ZHU Biao, ZHANG Hongli, LU Guoyang, WANG Youheng, LIU Weiping, LIN Jinjin, LIU Liwei, YAN Xinyang
Journal of Arid Meteorology    2023, 41 (3): 351-358.   DOI: 10.11755/j.issn.1006-7639(2023)-03-0351
Abstract433)   HTML21)    PDF(pc) (9211KB)(1069)       Save

The northwest region of China is located in the hinterland of Eurasia, in which the source of water vapor is scarce, and drought is its main climatic feature. In recent years, with the continuous increase of regional precipitation, the warming and wetting in Northwest China has attracted great attention from all walks of life. In order to scientifically respond to social concerns, the team used multi-source data to conduct in-depth research on the phenomenon of warming and wetting in Northwest China from multi-scale and multi-dimensional perspectives, and found that the trend of wetting in Northwest China had significant and nonlinear enhancement characteristics. It is recognized that the wetting in Northwest China is expanding eastward, and the land surface evapotranspiration there has a special negative feedback mechanism on climate warming. It is estimated that the warming and wetting trend will still maintain in Northwest China in this century, and the wetting trend is driven by multi-factor comprehensive driving mechanism. The multi-aspect impacts of the warming and wetting in Northwest China are evaluated, and the technical countermeasures to deal with the warming and wetting there are put forward, and the research results of “the enhancement and eastward expansion of climate warming and humidification, formation mechanism and important environmental impacts in Northwest China” are formed. The major consultation report based on the research results has played an important decision-making support for the national strategies such as the development of the western region in the new era and the ecological protection and high-quality development of the Yellow River Basin. The research results were selected as “China's Top Ten Scientific and Technological Progress in Ecological Environment” in 2022, and have also received extensive attention from the international academic communities.

Table and Figures | Reference | Related Articles | Metrics
Characteristics of Extreme Low Temperature Events in Southeast of Gansu Province in Recent 50 Years and Their Circulation Background
HAO Hui, GUO Qingyuan, MA Pengcheng, WANG Lina, LIU Liwei, LIU Weiping, LI Changde
Journal of Arid Meteorology    2020, 38 (6): 900-908.  
Abstract396)      PDF(pc) (1531KB)(1710)       Save
Based on the daily minimum temperature observation data in southeast of Gansu Province during 1969-2018, the variation of extreme low temperature events was analyzed, then 74 circulation characteristic quantities from National Climate Center were used to research the circulation system affecting the extreme low temperature events. The results are as follows: (1) The frequency of annual extreme low temperature events in southeast of Gansu Province reduced obviously with a rate of 2.3 d·(10 a)-1 in the last 50 years, and the reduction was most significant in summer and slowest in winter. There was an abrupt change of extreme low temperature days in 1987, after the abrupt change, the frequency of extreme low temperature events was relatively lower. (2) Compared with the climatic mean, the intensity of extreme low temperature events tended to increase, before 1987, the low temperature intensity anomaly increased with a rate of 0.2 ℃·(10 a)-1, while after 1987, the extrem low temperature intensity anomaly increased with a rate of 1.2 ℃·(10 a)-1. (3) The intensity of extreme low temperature in spring, summer, autumn and winter mainly ranged from -5.0~5.0 ℃, 10.0~15.0 ℃, -5.0~10.0 ℃, -20.0~-10.0 ℃, and the occurrence frequencies were 61.9%, 90.1%, 73.4% and 73.1%, respectively. (4) There was a positive correlation between extreme low temperature events and Eurasian meridional circulation in southeast of Gansu Province. The extreme low temperature events was related with cold air, the area index of western Pacific subtropical high and the intensity of polar vorticity center in the northern hemisphere in winter, while it was related with subtropical high northern boundary of South China sea, subtropical high northern boundary of the western Pacific and polar vorticity intensity of the Pacific in spring. The composited analysis of geopotential height fields indicated that Mongolia was a cold high pressure center on ground, and polar vorticity center was located in the eastern hemisphere from 500 hPa to 100 hPa, the westerly belt prevailed meridional circulation, and east Asian large trough in the westerly belt was deep and westward, the region of southeast of Gansu was controlled by strong northwest airflow after the trough, which was favourable to forming extreme low temperature events.
Related Articles | Metrics